
[image: image1.png]

[image: image2.jpg]% gi;jso%em Center

How To Develop an Integration Using the SCOM 2007 R2 Universal Connector
White Paper

Published: March 2009
Contents

1Introduction

New Alert Data Flow in the Universal Connector
1
Integration Logic Scenarios
2
Processing a New Operations Manager Alert Forwarded to the Remote System
3
Processing an Update to an Operations Manager Alert Forwarded to the Remote System
7
Processing an Update to the Event/Ticket in the Remote System to be Forwarded to Operations Manager
11
APPENDIX A : Standard Values and Definitions
14
EventType
14
ResolutionState
14
Severity
14
APPENDIX B : Operations Manager Alert Properties
16
APPENDIX C : Sample PowerShell Script for Processing a New Alert from Operations Manager
18
APPENDIX D: Sample PowerShell Script for Processing a Alert Update from Operations Manager
21
APPENDIX E: Sample PowerShell Script for Processing an Update to the Event/Ticket in the Remote System to be Forwarded to Operations Manager
23

Introduction

The Operations Manager 2007 R2 Universal Connector provides customers and partners the ability to integrate Operations Manager alerts with any remote system. To use the Universal Connector, custom integration logic needs to be developed on the remote system to process the alert data from Operations Manager. The intention of this document is to step through the process of developing the custom integration.

There are many alternatives to developing the integration using the Universal Connector. The Universal Connector is a framework that enables customers and partners to develop integrations easily through the use of industry standards. The Universal Connector creates xml files on Windows and property files on Unix/Linux for each alert. This document will utilize PowerShell scripts to show the ease of developing an integration. However, for a robust solution, it may be a better solution to look at a developing a Windows service or unix daemon, or a process that can be kicked off on a scheduled basis.

New Alert Data Flow in the Universal Connector

Before we begin the discussion of how to integrate with the Universal Connector, let’s discuss the flow of data in the Universal Connector. The following is the flow of alert data through the Universal Connector for processing a new alert.

· The Operations Manager alert is forwarded to remote system in either XML or Key=Value Pair(evt) file format

· The universal provider on the remote system creates a file (xml or property file) in a specified directory

· The custom integration logic picks up file from specified directory and inserts data into the remote system application

· The custom integration logic creates a file in a specified directory with specific data to update the Operations Manager alert, i.e. TicketID
· The universal provider picks up custom integration file and sends it back to Operations Manager to update the alert

· The Operations Manager alert is updated
Integration Logic Scenarios

There are a number of different scenarios which need to be addressed by the integration logic. Those scenarios are:

· Processing a new Operations Manager alert forwarded to the remote system

· Processing an update to an Operations Manager alert forwarded to the remote system

· Processing an update to the event/ticket in the remote system to be forwarded to Operations Manager

The following sections will discuss how to develop the integration for each of these scenarios. The discussions assume the Universal Connector Provider has been installed on the remote system and the Universal Connector Service has been installed and is successfully talking to Operations Manager via the Operations Manager SDK.

Processing a New Operations Manager Alert Forwarded to the Remote System
When a new Operations Manager alert is forwarded to the remote system, the universal provider will receive the data, then create an xml file (on windows) or a key=value pair (evt) file (on unix/linux) on the remote system. The file will be created in the following directory:

 %ProviderInstallDirectory%\UnvEvents\FromOpsMgr

The file will be named <alert id>.n.xml on windows and <alert id>.n.evt on unix, where n is an incremented sequence number starting at 1. This is added so that if an alert is forwarded and not processed in a timely manner or if an alert is updated multiple times in a short time period, the files are not overwritten and potentially lose updates.

NOTE: Process the lower numbers first so that the sequence of ‘activities’ is not lost. In other words, if there are multiple files in the directory with the same alert id, make sure the lower, ‘.n’ is processed first.

The new alert file will contain at a minimum, the following elements:

AlertId
EventType=0

ManagementGroupName

Priority
ResolutionState=0
Status
Note the EventType property. This property is critical to the Universal Connector. It tells the Universal Connector what type of transaction is being processed. Please see Appendix A. for a list of EventTypes and their definitions.

The following is a sample xml file of a new alert forwarded to the remote system:

<?xml version="1.0" encoding="utf-8"?>

<UNVEvent>

<AlertId>f8360bc9-382c-481e-8b44-8a9bcb43e119</AlertId>

<ComputerDomain>SCX</ComputerDomain>

<ComputerName>SCXINT-LH-12</ComputerName>

<Description>The IIS 7.0 Web Server on SCXINT-LH-12.SCX.com is unavailable.</Description>

<EventType>0</EventType>

<ManagementGroupName>mgs_scxint-lh-12</ManagementGroupName>

<ManagementPack>Microsoft.Windows.InternetInformationServices.2008</ManagementPack>

<ManagementServer>scxint-lh-12</ManagementServer>

<ModifiedBy>SCX\scxsvc</ModifiedBy>

<MonitorName>Microsoft.Windows.InternetInformationServices.2008.WebServer.NTService.CheckServiceState.Monitor</MonitorName>

<MonitorTarget>Microsoft.Windows.InternetInformationServices.2008.WebServer</MonitorTarget>

<MonitoringClassName>Microsoft.Windows.InternetInformationServices.2008.WebServer</MonitoringClassName>

<MonitoringObjectHealthState>Error</MonitoringObjectHealthState>

<MonitoringObjectInMaintenanceMode>False</MonitoringObjectInMaintenanceMode>

<MonitoringObjectPath>SCXINT-LH-12.SCX.com</MonitoringObjectPath>

<Name>IIS 7.0 Web Server is unavailable</Name>

<Priority>Normal</Priority>

<ProblemId>8ad2fca3-f8d1-73c6-673c-b1cde2a74731</ProblemId>

<RepeatCount>0</RepeatCount>

<ResolutionState>0</ResolutionState>

<Severity>2</Severity>

<TimeOfLastEvent>2009-07-22T13:01:00.530Z</TimeOfLastEvent>

<WebConsoleUrl>http://SCXINT-LH-12:51908/default.aspx?DisplayMode=Pivot&AlertID=f8360bc9-382c-481e-8b44-8a9bcb43e119</WebConsoleUrl>

</UNVEvent>
The custom integration logic needs to do the following when it receives a new alert from Operations Manager:

1. Read the new alert file from the ‘FromOpsMgr’ directory

Things to consider:

· Organize the files such that all of the files for the same alert are processed in the correct order, by using the ‘sequence’ number.

· All alert files are placed in this directory, so when processing a file, ensure the integration logic denotes the transaction type from the EventType value.

2. Insert it into the remote system application

Things to consider:

· Store the alert id somewhere in the record created in the remote system application such that it will be easy to access it when processing updates.

· Store the management group name in the record created in the remote system application. This will be necessary to enable updates from the remote system application to be sent back to Operations Manager to update the alert.

· Perform the necessary mappings of the Resolution State from Operations Manager to the appropriate state/status in the remote system application. The ResolutionState is passed as an integer value now. Notice for a “New” alert, the ResolutionState value is ‘0’. See Appendix A for a list of default values for Resolution State and what they represent.

· Perform the necessary mappings of the Severity from Operations Manager to the appropriate severity in the remote system application. The Severity is passed as an integer value. See Appendix A for a list of default values for Severity and what they represent.

· See Appendix B for a list of all Operations Manager alert properties that could be forwarded.

3. Create the acknowledgement file to let Operations Manager know the alert was received

Things to consider:

· If you do not send an acknowledgement back to Operations Manager, Operations Manager will forward the alert again until it receives an acknowledgement or it exceeds the maximum number of retries.

· The acknowledgement file must be created in a directory with the same name as the management group from which it came. This enables the Universal Connector to handle multiple management groups. The directory where the acknowledgement file should be created is:

· %ProviderInstallDirectory%\UnvEvents\%ManagementGroup%
· The %ManagementGroup% directory is not created by default, so the integration logic must check for its existence and create it if it doesn’t exist.
· The acknowledgement file must contain the following attributes at a minimum:
· AlertId
· EventId
· EventType=2

· ManagementGroupName
· Notice the EventType value for an acknowledgement is 2.

· The value of EventId will be placed in the TicketId property in the Operations Manager alert.

· Acknowledgements will not update additional fields in Operations Manager. In other words, adding the OwnerName to the acknowledgement file, will NOT update the Owner in the Operations Manager alert. To accomplish this, the integration logic must create an acknowledgement, followed by another file for an ‘update’ from the remote system. Handling updates from the remote system will be discussed later in this document.

4. Delete the new alert file from the ‘FromOpsMgr’ directory

Things to consider:

· Only delete the file after you have processed it

· Make sure you delete the file, or it could be processed multiple times by the integration

Appendix C contains a sample PowerShell script which handles the processing of a new alert received from Operations Manager.

Processing an Update to an Operations Manager Alert Forwarded to the Remote System
When an Operations Manager alert that has been forwarded to the remote system via the Universal Connector is updated, the update will be forwarded to the remote system. The universal provider will receive the data, then create an xml file (on Windows) or a key=value pair (evt) file (on Unix/Linux) on the remote system. The file will be created in the following directory:

 %ProviderInstallDirectory%\UnvEvents\FromOpsMgr

This is the same directory as the new alert files. Everything is sent to the same directory. The file will be named <alert id>.n.xml on windows and <alert id>.n.evt, where n is an incremented sequence number starting at 1. This is added so that if an alert is forwarded and not processed in a timely manner or if an alert is updated multiple times in a short time period, the files are not overwritten and updates potentially lost.

NOTE: Process the lower numbers first so that the sequence of ‘activities’ is not lost. In other words, if there are multiple files in the directory with the same alert id, make sure the lower, ‘.n’ is processed first.

The most common updates are for changes in the Resolution State, i.e. closing an alert.

The update alert file will contain at a minimum, the following elements:

AlertId
EventType=1

ManagementGroupName

Priority
ResolutionState=255
Status
Note the EventType property. The value of 1 denotes this transaction as an update. Please see Appendix A for a list of EventTypes and their definitions.

The following is a sample xml file of an alert update forwarded to the remote system:

<?xml version="1.0" encoding="utf-8"?>

<UNVEvent>

<AlertId>f8360bc9-382c-481e-8b44-8a9bcb43e119</AlertId>

<ComputerDomain>SCX</ComputerDomain>

<ComputerName>SCXINT-LH-12</ComputerName>

<Description>The IIS 7.0 Web Server on SCXINT-LH-12.SCX.com is unavailable.</Description>

<EventId>255</EventId>

<EventType>1</EventType>

<ManagementGroupName>mgs_scxint-lh-12</ManagementGroupName>

<ManagementPack>Microsoft.Windows.InternetInformationServices.2008</ManagementPack>

<ManagementServer>scxint-lh-12</ManagementServer>

<ModifiedBy>System</ModifiedBy>

<MonitorName>Microsoft.Windows.InternetInformationServices.2008.WebServer.NTService.CheckServiceState.Monitor</MonitorName>

<MonitorTarget>Microsoft.Windows.InternetInformationServices.2008.WebServer</MonitorTarget>

<MonitoringClassName>Microsoft.Windows.InternetInformationServices.2008.WebServer</MonitoringClassName>

<MonitoringObjectHealthState>Success</MonitoringObjectHealthState>

<MonitoringObjectInMaintenanceMode>False</MonitoringObjectInMaintenanceMode>

<MonitoringObjectPath>SCXINT-LH-12.SCX.com</MonitoringObjectPath>

<Name>IIS 7.0 Web Server is unavailable</Name>

<Priority>Normal</Priority>

<ProblemId>8ad2fca3-f8d1-73c6-673c-b1cde2a74731</ProblemId>

<RepeatCount>0</RepeatCount>

<ResolutionState>255</ResolutionState>

<Severity>2</Severity>

<TimeOfLastEvent>2009-07-22T14:11:52.500Z</TimeOfLastEvent>

<WebConsoleUrl>http://SCXINT-LH-12:51908/default.aspx?DisplayMode=Pivot&AlertID=f8360bc9-382c-481e-8b44-8a9bcb43e119</WebConsoleUrl>

</UNVEvent>
The custom integration logic needs to do the following when it receives an alert update from Operations Manager:

1. Read the alert update file from the ‘FromOpsMgr’ directory

Things to consider:

· Organize the files such that all of the files for the same alert are processed in the correct order, by using the ‘sequence’ number.

· All alert files are placed in this directory, so when processing a file, ensure the integration denotes the transaction type from the EventType value.

2. Update the appropriate record in the remote system application

Things to consider:

· Then EventId value will contain the value the remote application provided when it acknowledged the processing of the new alert. This will enable the integration logic to easily locate the corresponding record in the remote application.

· Perform the necessary mappings of the Resolution State from Operations Manager to the appropriate state/status in the remote/custom application. The ResolutionState is passed as an integer value now. Notice for a “Closed” alert, the ResolutionState value is ‘255’. See Appendix A for a list of default values for Resolution State and what they represent.
· Perform the necessary mappings of the Severity from Operations Manager to the appropriate severity in the remote/custom application. The Severity is passed as an integer value. See Appendix A for a list of default values for Severity and what they represent.
· See Appendix B for a list of all Operations Manager alert properties that could be forwarded.

3. Create the acknowledgement file to let Operations Manager know the update was received

Things to consider:

· If you do not send an acknowledgement back to Operations Manager, Operations Manager will forward the alert again until it receives an acknowledgement or it exceeds the maximum number of retries.

· The acknowledgement file must be created in a directory with the same name as the management group from which it came. This enables the Universal Connector to handle multiple management groups. The directory where the acknowledgement file should be created is:

· %ProviderInstallDirectory%\UnvEvents\%ManagementGroup%
· The %ManagementGroup% directory is not created by default, so the integration must check for its existence and create it if it doesn’t exist
· The acknowledgement file must contain the following attributes at a minimum:
· AlertId
· EventId

· EventType=3

· ManagementGroupName

· Notice the EventType value for an acknowledgement of an update is 3.

· Acknowledgements will not update additional fields in Operations Manager. In other words, adding the OwnerName to the acknowledgement file, will NOT update the Owner in the Operations Manager alert. To accomplish this, the integration logic must create an acknowledgement, followed by another file for an ‘update’ from the remote system. Handling updates from the remote system will be discussed later in this document.

4. Delete the alert update file from the ‘FromOpsMgr’ directory

Things to consider:

· Only delete the file after you have processed it.

· Make sure you delete the file, or it could be processed multiple times by the integration logic.

Appendix D contains a sample PowerShell script which handles the processing of an alert update received from Operations Manager.

Processing an Update to the Event/Ticket in the Remote System to be Forwarded to Operations Manager
The Universal Connector enables bi-directional synchronization of the Operations Manager alert and the event/ticket in the remote system. Thus, updates in the remote system can be used to update Operations Manager. To update Operations Manager based on updates from the remote system, the integration must create a file containing the properties and values to be updated in the %ProviderInstallDirectory%\UnvEvents\%ManagementGroup% directory.
The most common updates are for changes in the status/state (Resolution State), i.e. closing an event/ticket.

The update file to be sent back to Operations Manager must contain at a minimum, the following elements:

AlertId
EventType=1

ManagementGroupName

Note the EventType property. The value of 1 denotes this transaction as an update. Please see Appendix A for a list of EventTypes and their definitions.

The following is a sample xml file of an event/ticket update to be forwarded to the Operations Manager:

<?xml version='1.0'?>

<UNVEvent>

 <EventType>1</EventType>

 <AlertId>e367185c-48a9-4ebd-a054-10872da92db1</AlertId>

 <ManagementGroupName>mgs_scxint-lh-12</ManagementGroupName>

 <ResolutionState>255</ResolutionState>

</UNVEvent>
The custom integration logic needs to do the following to update Operations Manager with an update from the remote system:

1. The integration logic must be able to detect and capture updates that occur in the remote system on for events/tickets that were created from Operations Manager alerts

Things to consider:

· This could be database triggers, workflow actions, rules processing, etc. It really depends on the capabilities of the remote system.

2. Create the update file to be sent to Operations Manager

Things to consider:

· The values must be values that Operations Manager understands. There is no mapping or data translation that occurs. Thus, values for Resolution State and Severity must be those that Operations Manager expects. The values for Resolution State and Severity are expected to be in their numeric values. See Appendix A for default values.

· The file must be created in a directory with the same name as the management group from which it came. This enables the Universal Connector to handle multiple management groups. The directory where the acknowledgement file should be created is:

· %ProviderInstallDirectory%\UnvEvents\%ManagementGroup%
· The %ManagementGroup% directory is not created by default, so the integration logic must check for its existence and create it if it doesn’t exist.
· The update file must contain the following attributes at a minimum:
· AlertId
· EventType=1
· ManagementGroupName

· Notice the EventType value for an update is 1.

· Obviously the file must contain the property and value of the fields to update. The only fields in Operations Manager that can be updated are:

· CustomField1 – 10

· EventId
· OwnerName

· ResolutionState

· IMPORTANT NOTE: When generating the file, you may want to create the file with a .tmp suffix initially, and then rename the file to the appropriate suffix (.xml or .evt). The reasoning for this is there is a potential for file locking issues if the Universal Provider is trying to read the files from the directory while a new file is in the process of writing the new file, especially if the integration program creates the file at the beginning and does some processing before writing all the necessary data and ultimately closing the file. In the past, we have seen where files have been picked up with only partial data. This is rare, but something to keep in mind. Hence, it is always safer to create the file with a different suffix, and then rename the file to the final name. The rename function is very fast.

Appendix E contains a sample PowerShell script which mimics the processing of an update to an event/ticket created from an Operations Manager alert.

APPENDIX A : Standard Values and Definitions

EventType

The following are the EventType values and definitions used by the Universal Connector:

	EventType Value
	Purpose/Definition

	EventType=0 or

<EventType>0</EventType>
	New Operations Manager Alert being forwarded

	EventType=1 or

<EventType>1</EventType>
	Update to an Operations Manager alert being forwarded to the remote system or

Update to the event/ticket on the remote system being forwarded to Operations Manager

	EventType=2 or

<EventType>2</EventType>
	Remote system acknowledgement of a new alert

	EventType=3 or

<EventType>3</EventType>
	Remote system acknowledgement of an alert update

ResolutionState

The resolution state is the state of an alert in relation to its status in the resolution cycle. The resolution state is passed as an integer value in the RTM version of the Interop Connectors. The following are the default ResolutionState values:

· 0 = New

· 255 = Closed

Severity

The alert severity indicates its seriousness. The following are the default Severity values that are available:

· 0 = Information

· 1 = Warning

· 2 = Critical

NOTE: The alert severity cannot be updated in SCOM 2007 once the alert is created.
APPENDIX B : Operations Manager Alert Properties

The following is a list of all of the Operations Manager alert properties that could be forwarded via the Universal Connector. The property name will be used as the xml tag (<propertyname>value</propertyname>) or key in the key value pair (propertyname=value).
· AckId

· Id

· TicketId

· ComputerName

· NetbiosDomainName

· CustomField1

· CustomField2

· CustomField3

· CustomField4

· CustomField5

· CustomField6

· CustomField7

· CustomField8

· CustomField9

· CustomField10

· Description

· EventType

· EventSource

· Message

· LastModifiedBy

· MOMConfigGroup

· Name

· Owner

· RepeatCount

· Severity

· TimeAdded

· LastModified

· Version

· WebTransactionTime

· LastModifiedByNonConnector

· MaintenanceModeLastModified

· MonitoringClassId

· MonitoringObjectDisplayName

· MonitoringObjectFullName

· MonitoringObjectId

· MonitoringRuleId

· PrincipalName

· StateLastModified

· TimeResolutionStateLastModified

· TimeResolved

· ManagementServer

· MessageText

· Category

· ConnectorId

· ConnectorStatus

· ManagementGroupName

· MonitoringObjectHealthState

· MonitoringObjectInMaintenanceMode

· MonitoringObjectPath

· Priority

· ProblemId

· ResolutionState

· ManagementPack

· MonitorName *
· MonitorTarget *
· RuleName *
· RuleTarget *
· MonitoringClassName *
· WebConsoleUrl*

* denotes fields that are NOT available in the Beta2 version of the Universal Connector, but are in the RC and RTM version.
APPENDIX C : Sample PowerShell Script for Processing a New Alert from Operations Manager

The following sample script processes new alerts forwarded from Operations Manager via the Universal Connector in xml format (Windows targets). It emulates the inserting of a record in a remote system application by creating a new xml file in the EMS Emulator directory.

Copyright (c) Microsoft Corporation. All rights reserved.

THIS SAMPLE CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND,

WHETHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE.

IF THIS CODE AND INFORMATION IS MODIFIED, THE ENTIRE RISK OF USE OR RESULTS IN

CONNECTION WITH THE USE OF THIS CODE AND INFORMATION REMAINS WITH THE USER.

#

Sample script to process incoming alerts from SCOM 2007 R2

forwarded via the Universal Connector.

#

Path to alert xml files forwarded from OpsMgr

$FromOMPath="C:\Program Files\System Center Operations Manager 2007 Providers\Operations Manager 2007 Connector to Microsoft Universal Provider\UnvEvents\FromOpsMgr"

Path to EMS Emulator

$EMSPath="C:\Program Files\EMSEmulator"

Path to xml files to be sent to OpsMgr

$ToOMPath = "C:\Program Files\System Center Operations Manager 2007 Providers\Operations Manager 2007 Connector to Microsoft Universal Provider\UnvEvents\"

Next Ticket Number from EMS EMulator Config

$EMSConfigFile=$EMSPath + "\config\EMSEmulatorConfig.xml"

$EMSConfigxml = [xml] (get-content $EMSConfigFile)

$NextTicket = [int] $EMSConfigxml.EMSConfig.NextTicket

Read alert xml files from OpsMgr

$alertfiles = (get-childitem -path $FromOMPath -include *.xml -recurse)

foreach($alertfile in $alertfiles) {

 $xml= [xml](get-content $alertfile)

 # New Alert Processing - EventType = 0

 if ($xml.UNVEvent.EventType = "0") {

 # ADD Logic to Insert alert into Customer Application

 # simulation follows

 $newelem = $xml.CreateElement("TicketNumber")

 $newelem.set_InnerText($NextTicket)

 $xml.UNVEvent.AppendChild($newelem)

 # Map Resolution State

 if ($xml.UNVEvent.ResolutionState = "0") {

 $xml.UNVEvent.ResolutionState = "New"

 }

 # Map Severity

 if ($xml.UNVEvent.Severity = "2") {

 $xml.UNVEvent.Severity = "Critical"

 } elseif ($xml.UNVEvent.Severity = "1") {

 $xml.UNVEvent.Severity = "Warning"

 } elseif ($xml.UNVEvent.Severity = "0") {

 $xml.UNVEvent.Severity = "Information"

 }

 $newFile=$EMSPath + "\" + $NextTicket + ".xml"

 $xml.save($newFile)

 # CREATE Acknowledgement for New Alert, return TicketNumber

 $ackxml = new-object System.Xml.XmlDocument

 # Create root node

 $ackroot = $ackxml.CreateElement("UNVEvent")

 $ackxml.appendchild($ackroot)

 # Add EventType to ackxml

 $ackelem = $ackxml.CreateElement("EventType")

 $ackelem.set_InnerText("2")

 $ackroot.AppendChild($ackelem)

 # Add AlertId to ackxml

 $ackelem = $ackxml.CreateElement("AlertId")

 $ackelem.set_InnerText($xml.UNVEvent.AlertId)

 $ackroot.AppendChild($ackelem)

 # Add EventID to ackxml

 $ackelem = $ackxml.CreateElement("EventId")

 $ackelem.set_InnerText($NextTicket)

 $ackroot.AppendChild($ackelem)

 # Add ManagementGroup to ackxml

 $ackelem = $ackxml.CreateElement("ManagementGroupName")

 $ackelem.set_InnerText($xml.UNVEvent.ManagementGroupName)

 $ackroot.AppendChild($ackelem)

 # Add xml intro

 $xmlintro = $ackxml.CreateProcessingInstruction("xml", "version='1.0'")

 $ackxml.InsertBefore($xmlintro, $ackroot)

 # Check for MgmtGroup directory, create if it doesn't exist

 $MGdir = $ToOMPath + $xml.UNVEvent.ManagementGroupName

 $ackFile = $MGdir + "\" + $NextTicket + ".xml"

 if (!(Test-Path $MGdir)) { mkdir $MGdir }

 $ackxml.save($ackFile)

 remove-item $alertfile

 $NextTicket++

 }

}

update EMS Config File with new NextTicket value

$EMSConfigxml.EMSConfig.NextTicket = [string] $NextTicket

$EMSConfigxml.save($EMSConfigFile)
APPENDIX D: Sample PowerShell Script for Processing a Alert Update from Operations Manager

The following sample script processes alert updates forwarded from Operations Manager via the Universal Connector in xml format (Windows targets). It emulates the updating the record in a remote system application by using the EventId value.

Copyright (c) Microsoft Corporation. All rights reserved.

THIS SAMPLE CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND,

WHETHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE.

IF THIS CODE AND INFORMATION IS MODIFIED, THE ENTIRE RISK OF USE OR RESULTS IN

CONNECTION WITH THE USE OF THIS CODE AND INFORMATION REMAINS WITH THE USER.

#

Sample script to process incoming alerts updates from SCOM 2007 R2

forwarded via the Universal Connector.

#

Path to alert xml files forwarded from OpsMgr

$FromOMPath="C:\Program Files\System Center Operations Manager 2007 Providers\Operations Manager 2007 Connector to Microsoft Universal Provider\UnvEvents\FromOpsMgr"

Path to EMS Emulator

$EMSPath="C:\Program Files\EMSEmulator"

Path to xml files to be sent to OpsMgr

$ToOMPath = "C:\Program Files\System Center Operations Manager 2007 Providers\Operations Manager 2007 Connector to Microsoft Universal Provider\UnvEvents\"

Next Ticket Number

$NextTicket=200

Read alert xml files from OpsMgr

$alertfiles = (get-childitem -path $FromOMPath -include *.xml -recurse)

foreach($alertfile in $alertfiles) {

 $xml= [xml](get-content $alertfile)

 # Alert Update Processing - EventType = 1

 if ($xml.UNVEvent.EventType = "1") {

 # ADD Logic to Update the Customer Application with data from OpsMgr

 # simulation follows

 # Find Ticket that matches the one from the update

 $EMSfilename = $EMSPath + "\" + $xml.UNVEvent.EventId + ".xml"

 if ((Test-Path $EMSfilename)) {

 # Get matched Ticket

 $existingTicket = [xml] (Get-Content $EMSfilename)

 # Update Resolution State

 if ($xml.UNVEvent.ResolutionState = "255") {

 $existingTicket.UNVEvent.ResolutionState = "Closed"

 }

 $existingTicket.save($EMSfilename)

 }

 # CREATE Acknowledgement for New Alert, return TicketNumber

 $ackxml = new-object System.Xml.XmlDocument

 # Create root node

 $ackroot = $ackxml.CreateElement("UNVEvent")

 $ackxml.appendchild($ackroot)

 # Add EventType to ackxml

 $ackelem = $ackxml.CreateElement("EventType")

 $ackelem.set_InnerText("3")

 $ackroot.AppendChild($ackelem)

 # Add AlertId to ackxml

 $ackelem = $ackxml.CreateElement("AlertId")

 $ackelem.set_InnerText($xml.UNVEvent.AlertId)

 $ackroot.AppendChild($ackelem)

 # Add EventID to ackxml

 $ackelem = $ackxml.CreateElement("EventId")

 $ackelem.set_InnerText($xml.UNVEvent.EventId)

 $ackroot.AppendChild($ackelem)

 # Add ManagementGroup to ackxml

 $ackelem = $ackxml.CreateElement("ManagementGroupName")

 $ackelem.set_InnerText($xml.UNVEvent.ManagementGroupName)

 $ackroot.AppendChild($ackelem)

 # Add xml intro

 $xmlintro = $ackxml.CreateProcessingInstruction("xml", "version='1.0'")

 $ackxml.InsertBefore($xmlintro, $ackroot)

 # Check for MgmtGroup directory, create if it doesn't exist

 $MGdir = $ToOMPath + $xml.UNVEvent.ManagementGroupName

 $ackFile = $MGdir + "\" + $xml.UNVEvent.EventId + ".xml"

 if (!(Test-Path $MGdir)) { mkdir $MGdir }

 $ackxml.save($ackFile)

 remove-item $alertfile

 $NextTicket++
 }

}
APPENDIX E: Sample PowerShell Script for Processing an Update to the Event/Ticket in the Remote System to be Forwarded to Operations Manager

The following sample script simulates the closing of a ticket in the remote system and creates the necessary file to be forwarded to Operations Manager to update the corresponding alert. It takes the ticket number as an argument.

Copyright (c) Microsoft Corporation. All rights reserved.

THIS SAMPLE CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND,

WHETHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE.

IF THIS CODE AND INFORMATION IS MODIFIED, THE ENTIRE RISK OF USE OR RESULTS IN

CONNECTION WITH THE USE OF THIS CODE AND INFORMATION REMAINS WITH THE USER.

#

Sample script to simulate the closing of a ticket in the EMS Emulator and

create the necessary file to close the corresponding alert in OpsMgr

#

param($CloseTicket)

Path to alert xml files forwarded from OpsMgr

$FromOMPath="C:\Program Files\System Center Operations Manager 2007 Providers\Operations Manager 2007 Connector to Microsoft Universal Provider\UnvEvents\FromOpsMgr"

Path to EMS Emulator

$EMSPath="C:\Program Files\EMSEmulator"

Path to xml files to be sent to OpsMgr

$ToOMPath = "C:\Program Files\System Center Operations Manager 2007 Providers\Operations Manager 2007 Connector to Microsoft Universal Provider\UnvEvents\"

Ticket Number to close

#$CloseTicket=$arg[0]

Simulate the closing of a Ticket in the EMS

ADD Logic to Update the Customer Application with data from OpsMgr

simulation follows

Find Ticket that matches the one from the update

$EMSfilename = $EMSPath + "\" + $CloseTicket + ".xml"

if ((Test-Path $EMSfilename)) {

Get matched Ticket

$existingTicket = [xml] (Get-Content $EMSfilename)

Update Resolution State

$existingTicket.UNVEvent.ResolutionState = "Closed"

$existingTicket.save($EMSfilename)

Need to Create file to be picked up by Connector and close OpsMgr alert

$closexml = new-object System.Xml.XmlDocument

Create root node

$closeroot = $closexml.CreateElement("UNVEvent")

$closexml.appendchild($closeroot)

Add EventType to closexml

$closeelem = $closexml.CreateElement("EventType")

$closeelem.set_InnerText("1")

$closeroot.AppendChild($closeelem)

Add AlertId to closexml

$closeelem = $closexml.CreateElement("AlertId")

$closeelem.set_InnerText($existingTicket.UNVEvent.AlertId)

$closeroot.AppendChild($closeelem)

Add ManagementGroup to closexml

$closeelem = $closexml.CreateElement("ManagementGroupName")

$closeelem.set_InnerText($existingTicket.UNVEvent.ManagementGroupName)

$closeroot.AppendChild($closeelem)

Add ResolutionStateto closexml

$closeelem = $closexml.CreateElement("ResolutionState")

 if ($existingTicket.UNVEvent.ResolutionState = "Closed") {

 $closeelem.set_InnerText("255")

 }

$closeroot.AppendChild($closeelem)

Add xml intro

$closeintro = $closexml.CreateProcessingInstruction("xml", "version='1.0'")

$closexml.InsertBefore($closeintro, $closeroot)

Check for MgmtGroup directory, create if it doesn't exist

$MGdir = $ToOMPath + $existingTicket.UNVEvent.ManagementGroupName

$closeFile = $MGdir + "\" + $existingTicket.UNVEvent.TicketNumber + ".xml"

if (!(Test-Path $MGdir)) { mkdir $MGdir }

$closexml.save($closeFile)

}
This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This white paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS
DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in, or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2009 Microsoft Corporation. All rights reserved.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

Microsoft is a trademark of the Microsoft group of companies.

All other trademarks are property of their respective owners.
1

